
There is a limit to how much any
of us can do alone. When faced
with complex problems, and tight
timescales, we break problems down
into smaller tasks, then we distribute
them to capable individuals, and
we try to leave them to get the job
done. When this is accepted wisdom
in the workplace, why do we tolerate
computer systems that operate alone,
that must be interrupted to respond
to urgent requirements, that exhibit
huge inefficiency and/or deliver results
late? Because, until now, there has
been no choice.

xCORE multicore microcontrollers are
unique. Like traditional MCUs they are
programmed in C/C++, but unlike
traditional products each device
contains a team of multiple processor
cores that can execute several tasks
concurrently and independently. Each

xCORE ARCHITECTURE

Today’s embedded applications must
process multiple concurrent tasks quickly,
minimize jitter and handle combinations
of fast, complex interfaces. It must
provide easy integration of a wide range
of components and be scalable to large
and small systems.

Traditional real-time systems are
interrupt-driven, relying on an RTOS to
schedule tasks and handle communication.
These systems face many challenges;
such as handling demanding I/O streams,
interrupt latency, kernel processing time,
scheduling jitter, cold-cache effects and
memory/resource contention. Systems
built on such a foundation are difficult or
impossible to verify, and the RTOS itself
imposes significant processor and memory
overhead.

The xCORE architecture solves these
problems by removing all of the features
of a traditional MCU that introduce
uncertainty. Many RTOS features are
integrated in hardware: for example,

THE ANSWER IS SIMPLE, MULTICORE MICROCONTROLLERS

system events are handled using a
scheduled single-cycle context switch,
so applications do not suffer context-
switching latency or jitter.

On xCORE, each activity has its own
dedicated core and resources ensuring
that, when needed, a response is
immediate.

With multiple processing cores executing
completely independently, tasks are
guaranteed to complete within a
strict timing budget. Each core can
run I/O, DSP and application code.
The connection between processor
resource and hardware ports is so tight
that response times are measured in
nanoseconds - thousands of times faster
than traditional microcontrollers. This
hardware-like performance enables
interfaces to be entirely written in
software, allowing systems to be
designed with the exact combination of
peripheral interfaces they require.

MULTICORE MICROCONTROLLERS

• Multiple processing cores
– Runs multiple tasks concurrently
– Guaranteed performance

• Immediate response time
 – 100x faster than other MCUs

• Flexible ports and peripherals

 – Sophisticated port logic

 – Supports fast complex interfaces

 – Multiple peripherals in one chip

• RTOS features in hardware
– Scheduler, timers, communications

 – Predictable repeatable behavior

 – Low latency

• Integrated development tools

 – Programmed in C and C++

 – Instrumentation/trace libraries

 – Static timing analyzer

• Multicore extensions for C

 – Concurrent tasks, timing,
communication, I/O,
memory management

xCORE ARCHITECTURE XM-005135-PC

core is incredibly flexible - capable
of control, DSP and high performance
GPI/O processing. Each core is also
predictable, exhibiting completely
reliable timing characteristics. Finally,
each core is connected, tightly coupled
with other members of the team.

Put simply, xCORE multicore
microcontrollers let you deliver smarter
solutions quicker, using technology that
is as simple as it is flexible, predictable
and scalable.

xCORE ARCHITECTURE

Traditional devices take a number of instruction cycles to
respond to an interrupt, during which time they store the
state associated with the running task and then load the
new state associated with the higher priority task that
needs to be started.

XMOS devices respond to events triggered by I/O pins,
timers and tasks, rather than interrupts. Since an xCORE
device can run multiple tasks in parallel there is no need
for one task to interrupt another. A task can handle an
event by running in parallel with other tasks and waiting
for the event to happen.

By default, each task in an xCORE application is placed
on a different logical core. This means the task runs
independently of the others and has incredibly quick
event response time. In RTOS terms, each task running
on its own core enjoys the highest priority scheduling by

Event

Task A

Task B
Execute Task B Task B Paused

XMOS

Traditional MCU

Execute Task B

Task A

Internal operation

Task B

Event

Interrupt

Save all registers
Fetch ISR vector

Save all registers
Fetch ISR vector

Execute Task B
Clear request

Restore registers

etc...

Interrupt

Each xCORE device has one or more tiles. Each tile has
up to eight independent 32-bit logical cores that run in
parallel without interruption from other cores.

Active cores are guaranteed a minimum level of MIPS.
Cores that are idle are not scheduled to the processing
resource.

All instructions complete in a single core cycle, or pause the
core, waiting for an external event. On xCORE-200 each
core can issue up to 2 instructions per clock cycle.

Cores are triggered by events that are managed by the
xTIME scheduler. Events that occur at I/O pins are fed
directly to a core by the Hardware Response ports. Events
can also be generated by timers and tasks, and serviced by
the scheduler, with guaranteed behavior.

xTIME™ SCHEDULER

Single core running: executes every 5 clock ticks (f/5 MHz)

xCORE XL200, XU200, XE200: five stage proecssing pipeline

Five cores running: executes every 5 clock ticks (f/5 MHz)

Eight cores running: executes every 8 clock ticks (f/8 MHz)

Decode
Read
Execute 1
Execute 2
Write

Decode
Read
Execute 1
Execute 2
Write

Decode
Read
Execute 1
Execute 2
Write

EVENTS AND INTERRUPTS

TASK PRIORITY

The advantages of the XMOS approach include:
• Response time to events is dramatically improved (in
conjunction with the multi-core xCORE architecture).
• Reasoning about worst-case execution time (WCET) is
easier since code cannot be interrupted during its execution.
Independent tests show that xCORE devices respond to
single events within 10ns and handle multiple asynchronous
real-time events within a worst-case response time of 100ns;
this is 100x times faster than conventional real-time systems
and critically, does not degrade in larger, more integrated
systems.
(http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6389416)

the hardware. To reduce resource requirements, lower priority
tasks can share a core via more traditional multi-tasking;
either by running an RTOS, or by using built-in co-operative
multitasking features.

xCORE ARCHITECTURE

The high-speed xCONNECT network ensures that all tasks
can communicate with very low overhead, whether they
are on the same tile, different tiles within a chip, or across
a network of xCORE devices.

When combined with the predictability of xCORE, the
scalability of xCONNECT enables both large and small
systems can be constructed from the same software
investment.

TASK COMMUNICATION

Many microcontrollers have a single complex memory
system with caches to hide the latency of memory
accesses. The uncertainty in the behavior of these
caches contributes to the lack of predictability of the
overall system. Rather than accelerate a slower memory
subsystem with caches, the entire xCORE memory runs at
the operating frequency of the processing pipeline and
is entirely deterministic:
• Each tile contains local SRAM memory, which is
shared between all cores on that tile for code and data.
• Each scheduled core has an allocated slot to access
the memory in a single cycle;
• The xCORE memory will always respond within the
allocated cycle
• Tasks communicate via inter-task communication
channels over the xCONNECT switch, or shared memory.
• Tasks communicate explicitly with external FLASH/
SDRAM memory using I/O ports, separate to the
local tile memory; no additional memory manager is
required.
• Each tile also has a block of one-time programmable
memory for secure boot code and encryption keys.

The GPIO pins of the xCORE device are managed by
port logic that can efficiently drive external pins high and
low, and sample values.

Ports are available in different widths (1/4/8/16/32bit)
depending on the device package. They are driven by
clocks or timers, and data can be buffered, serialized
and timestamped.

xCORE devices can communicate with fast, complex
interfaces that would not be possible using standard bit-
banging techniques required by other microcontrollers.
As well as running real-time parallel applications,
XMOS microcontrollers allow complex I/O protocols and
combinations of peripherals to be implemented via the
ports within a single device.

MEMORY SYSTEM

HARDWARE RESPONSE™ PORTS

PINS CORE

PORT

SERDES

FIFO
transfer
register

port counter

port
value

stamp/time

port
logic

output (drive) all blocks optional input (sample)

conditional
value

readyOut

readyIn

... ...

clock block

1-bit portdivider
100MHz
reference
clock

SPI

MAIN MEMORY

L1i CACHE

BUS

CPU COREL1d CACHE

L2 CACHE

L3 CACHE

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

SRAM

P
O

R
T

S

XMOS

TRADITIONAL MCU

OTP

FLASH

xCORE ARCHITECTURE XM-005135-PC

MULTICORE EXTENSIONS TO C

SOFTWARE DEVELOPMENT ENVIRONMENT

To help programmers access the real-time hardware
features of the architecture, some easy-to-use, yet powerful,
multicore language extensions for C have been added.
Software projects can mix C source files with or without the
multicore extensions enabled. The xTIMEcomposer compiler
automatically enables the extensions based on the file
extension.

On xCORE devices, programs are composed of multiple
tasks running in parallel. The concurrent tasks manage their
own state and resources and interact by communicating with
each other through xCONNECT. The ability of the xCORE
architecture to run code independently on multiple cores

allows tasks to be very responsive to events that occur in the
system. Each task can be expressed entirely in ANSI C, and
built into a system using multicore extensions. The compiler
maps tasks onto the logical cores of the device under user
direction in the code.

PROGRAMMING MULTICORE APPLICATIONS

The hardware features are complemented by a software
development environment, which makes it easy to define
real-time tasks as a scalable parallel system. The
xTIMEcomposer tools include fully standards-compliant C
and C++ compilers plus the standard language libraries, an
IDE, simulator, symbolic debugger, runtime instrumentation
and trace libraries and a static code timing analyzer (XTA).

All of the components are aware of the real-time multicore
nature of the programs, giving a fully integrated approach.

64-bit load and store
Each memory cycle can now load 64b of instruction or data,
compared to 32b on the XS1 architecture.
More memory
Four times as much instruction/data memory is made
available to xCORE-200 applications.
More instructions
As well as adding load and store instructions for the
wider word width, there are also additional instructions to
accelerate common compression, extraction, DSP and timing
functions.

WHAT’S NEW IN xCORE-200

Dual issue
The XS1 architecture issues a maximum of 1 instruction
per clock cycle, xCORE-200 can issue 2 instructions per
clock cycle. This means that, for a given clock frequency,
xCORE-200 has twice the peak instruction issue rate.
High priority logical cores
xCORE-200 allows some cores to have a higher priority
in the scheduler. Groups of high priority cores and
low priority cores will be scheduled in a round robin.
Determinism is not affected.

The C extensions includes features for:
• Task based parallelism
• Task communication
• Accurate timing and timestamping
• Ports and I/O
• Safe memory management

